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Abstract

Apparently for the first time in the literature, an exact closed-form solution is derived for an
axisymmetrically vibrating inhomogeneous circular plate that is simply supported at its boundary. The
solution is characterized here as an unusual one since for its counterpart—the homogeneous plate,
transcendental functions are called for whereas here a solution is found in elementary functions, namely,
polynomials. The analysis is based on an inverse vibration problem: Given a candidate mode shape and
density distribution, we calculate the plate stiffness so that the governing equation for the plate mode shape
is identically satisfied. We also are able to obtain the expression for the corresponding natural frequency.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The free vibration of circular plates with variable thickness or density has received considerable
attention in the literature. Conway [1] found an unusual closed-form solution for a variable-
thickness plate on an elastic foundation, in a static setting. Whereas a constant thickness plate
involves Kelvin functions, Conway’s solution was derived in closed-form. Analogous, closed-form
solutions were derived by Harris [2] for plates of variable thickness, free on their boundary and by
Lenox and Conway [3] who studied plates with arbitrary conditions, and with parabolic thickness
see front matter r 2004 Elsevier Ltd. All rights reserved.
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variation. In recent papers, Elishakoff [4,5] derived closed-form solutions for inhomogeneous
circular plates that are either clamped, or free at the boundary. Here we derive closed-form
solutions for the inhomogeneous plates that are simply supported at their boundary.
There appears to be a single monograph [6] solely devoted to plates of variable thickness. There

are several papers dedicated to vibrations of plates with thickness variations.
Axisymmetric vibration of circular plates of linearly varying thickness was studied by Prasad et

al. [7], whereas plates with double linear thickness were studied by Sing and Sascena [8]. Various
analytical and approximate techniques have been studied [9–17].
In this paper, we find closed form solutions to an inverse vibration problem for a simply

supported circular plate. Given a candidate mode shape and density distribution, we calculate the
plate stiffness so that the governing equation and boundary conditions for the plate mode shape
are identically satisfied. We also are able to obtain the expression for the corresponding natural
frequency. The solution is characterized here as an unusual one since for its counterpart—the
homogeneous plate, transcendental functions are called for whereas here a solution is found in
elementary functions, namely, polynomials. The solutions can also serve as benchmarks for
validations of numerical techniques.
2. Basic equations

The differential equation that governs the free axisymmetric vibration of the circular plate with
variable thickness reads [4]

DðrÞr3r4W þ
dD

dr
2r3

d3W

dr3
þ ð2þ nÞr2

d2W

dr2
� r

dW

dr

� �

þ
d2D

dr2
r3

d2W

dr2
þ nr2

dW

dr

� �
� rho2r3W ¼ 0; ð1Þ

where DðrÞ is the plate flexural rigidity D ¼ E h3=12ð1� n2Þ; hðrÞ is the thickness, n the Poisson
ratio, E the Young’s modulus, and r is the mass density. Here r2 is the Laplacian operator in
polar coordinates ðr2 ¼ d2=dr2 þ r�1d=drÞ where r denotes the radial coordinate and W the mode
shape. Defining the inertial term (mass per unit area) dðrÞ ¼ rh; we pose to find the stiffness
distribution DðrÞ and natural frequency o such that Eq. (1) is identically satisfied for a specified
dðrÞ and W ðrÞ:
To obtain a candidate mode shape, consider the static displacement of a uniform circular simply

supported plate under uniform load q0 per unit area. From Ref. [18], we have

w ¼
q0

64D
ðR2 � r2ÞðyR2 � r2Þ;

where R is the radius of the plate and the parameter y depends solely of the Poisson ratio.

y ¼ ð5þ nÞ=ð1þ nÞ:

Thus we seek to determine under what conditions is the function

W ¼ ðR2 � r2ÞðyR2 � r2Þ (2)
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a solution to Eq. (1). If we assume that the inertial term is a specified polynomial of degree m,

d ¼
Xm

i¼0

air
i; (3)

then it follows from Eq. (1) and the observation that W is a fourth degree polynomial, that the
stiffness must be of degree m þ 4:

D ¼
Xmþ4

i¼0

bir
i: (4)

In the following sections we find the coefficients bi and natural frequency o for the case of a
constant, linear and parabolic inertial term.
3. Constant inertial term (m=0)

We are given d ¼ a040; and the stiffness is sought as a fourth-order polynomial

DðrÞ ¼ b0 þ b1r þ b2r
2 þ b3r

3 þ b4r
4:

Inserting this expression along with Eq. (2) into the differential equation (1), we obtain

X7
i¼0

cir
i ¼ 0;

where

c0 ¼ 0; c1 ¼ 0; c2 ¼ �4ð3þ nÞR2b1; c3 ¼ 64b0 � 16ð3þ nÞR2b2 � a0o2R4 5þ n
1þ n

;

c4 ¼ 12ð11þ nÞb1 � 36ð3þ nÞR2b3;

c5 ¼ 32ð7þ nÞb2 � 64ð3þ nÞR2b4 þ 2a0o2R2 3þ n
1þ n

;

c6 ¼ ð340þ 60nÞb3; c7 ¼ 96ð5þ nÞb4 � a0o2: ð5Þ

Demanding that the above set of (non-trivial) coefficient vanish, yields a set of six homogeneous
linear equations on the six unknowns fb0; b1; . . . ; b4;o2g: Fortunately, the determinant of the
associated coefficient matrix is zero, hence a non-trivial solution is obtainable. Setting the
coefficient c7 to zero, we obtain the natural frequency

o2 ¼ 96ð5þ nÞb4=a0; (6)

where b4 is arbitrary but positive.
Upon substitution of Eq. (6) into Eq. (5), the remaining equations yield the coefficients in the

stiffness:

b0 ¼
57þ 18nþ n2

2ð1þ nÞ
R4b4; b1 ¼ 0; b2 ¼ �4

3þ n
1þ n

R2b4; b3 ¼ 0:
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Hence, the stiffness reads

DðrÞ ¼
57þ 18nþ n2

2ð1þ nÞ
R4 � 4

3þ n
1þ n

R2r2 þ r4
� �

b4:

Fig. 1 depicts the stiffness for various values of the Poisson ratio n:
4. Linearly varying inertial term (m=1)

We are given d ¼ a0 þ a1r; and the stiffness is sought as a fifth-order polynomial

DðrÞ ¼ b0 þ b1r þ b2r
2 þ b3r

3 þ b4r
4 þ b5r

5:

Instead of set (5), we get here seven linear algebraic equations in the seven unknowns
fb0; b1; . . . ; b5;o2g:

� 4ð3þ nÞR2b1 ¼ 0;

64b0 � 16ð3þ nÞR2b2 � a0o2R4 5þ n
1þ n

¼ 0;

12ð11þ nÞb1 � 36ð3þ nÞR2b3 � a1o2R4 5þ n
1þ n

¼ 0;

32ð7þ nÞb2 � 64ð3þ nÞR2b4 þ 2a0o2R2 3þ n
1þ n

¼ 0;

ð340þ 60nÞb3 � 100ð3þ nÞR2b5 þ 2a1o2R2 3þ n
1þ n

¼ 0;

96ð5þ nÞb4 � a0o2 ¼ 0;

ð644þ 140nÞb5 � a1o2 ¼ 0: ð7Þ
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In order to have a non-trivial solution, the determinant of the coefficient matrix must vanish

R6 ð3þ nÞð7þ nÞð5þ nÞð5546þ 2619nþ 364n2 þ 15n3Þ
1þ n

a1 ¼ 0:

Thus a1 ¼ 0; and we obtain the solution in the previous section.
5. Parabolically varying inertial term (m=2)

For m ¼ 2; i.e. the plate whose material density varies parabolically,

dðrÞ ¼ a0 þ a1r þ a2r
2; (8)

the bending stiffness has to be a sixth-order polynomial

DðrÞ ¼ b0 þ b1r þ b2r
2 þ b3r

3 þ b4r
4 þ b5r

5 þ b6r
6: (9)

Substitution of Eq. (2) in conjunction with Eqs. (8) and (9) into the governing differential
equation (1) yields

X9
i¼0

dir
i ¼ 0;

where

d0 ¼ 0; d1 ¼ 0; d2 ¼ �4R2ð3þ nÞb1;

d3 ¼ 64b0 � 16R2ð3þ nÞb2 � a0o2R4 5þ n
1þ n

;

d4 ¼ 12ð11þ nÞb1 � 36R2ð3þ nÞb3 � a1o2R4 5þ n
1þ n

;

d5 ¼ 32ð7þ nÞb2 � 64R2ð3þ nÞb4 þ o2 2a0R
2 3þ n
1þ n

� a2R
4 5þ n
1þ n

� �
;

d6 ¼ 20ð17þ 3nÞb3 � 100R2ð3þ nÞb5 þ 2a1o2R2 3þ n
1þ n

;

d7 ¼ 96ð5þ nÞb4 � 144R2ð3þ nÞb6 � o2 a0 � 2a2R
2 3þ n
1þ n

� �
;

d8 ¼ ð644þ 140nÞb5 � a1o2; d9 ¼ ð832þ 192nÞb6 � a2o2: ð10Þ

As in the case of the constant inertial term, we demand that all d ¼ 0; thus, we get a set of eight
equations with eight unknowns (seven coefficients b, and o2). The resulting determinantal
equation is

ð3þ nÞð7þ nÞa1ð360 490þ 325 523nþ 113 630n2 þ 19 024n3 þ 1512n4 þ 45n5Þ=ð1þ nÞ ¼ 0:

In order for the homogeneous system to have a non-trivial solution we must demand the
coefficient a1 to vanish. Substituting a1 ¼ 0 into set (10) and using the last equation for the
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determination of the frequency, we obtain

o2 ¼ 64ð13þ 3nÞb6=a2 (11)

and the stiffness coefficients

b0 ¼ R4b6½ð3285þ 2670nþ 744n2 þ 82n3 þ 3n4ÞR2a2

þ ð20 748þ 14 304nþ 3496n2 þ 352n3 þ 12n4Þa0
=12ð35þ 47nþ 13n2 þ n3Þa2;

b1 ¼ 0;

b2 ¼
ð1095þ 525nþ 73n2 þ 3n3ÞR2a2 � ð2184þ 1544nþ 344n2 þ 24n3Þa0

3ð35þ 47nþ 13n2 þ n3Þa2
R2b6;

b3 ¼ 0; b4 ¼ �
ð285þ 140nþ 15n2ÞR2a2 � ð52þ 64nþ 12n2Þa0

6ð5þ 6nþ n2Þa2
b6; b5 ¼ 0;

where b6 is an arbitrary constant. It follows from Eq. (11) that the ratio b6=a2 must be positive.
We have two sub-cases: (1) both b6 and a2 are positive, or (2) both are negative. In the former case
(1) the necessary condition for positiveness of the stiffness b0X0 is identically satisfied. In the
latter case (2) the above inequality reduces to

ð3285þ 2670nþ 744n2 þ 82n3 þ 3n4ÞR2

þ ð20 748þ 14 304nþ 3496n2 þ 352n3 þ 12n4Þa0=a2p0;

leading to the inequality

a0

ja2jR
2
X

3285þ 2670nþ 744n2 þ 82n3 þ 3n4

20 748þ 14 304nþ 3496n2 þ 352n3 þ 12n4
: (12)

It is interesting to note that in this case the requirement that dðRÞ be non-negative implies

a0

ja2jR
2
X1;

which is stronger than inequality (12)
As an example, for n ¼ 1

3
; the stiffness reads

DðrÞ ¼ R6 3595

528
þ

497a0

12R2a2

� �
þ

719

88
�

35a0

2R2a2

� �
r

R

� �2
�

þ �
125

16
þ

7a0

4R2a2

� �
r

R

� �4

þ
r

R

� �6
�

b6:

Fig. 2 depicts the variation of DðrÞ for different values of t � a0=ðR
2a2Þ:
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6. Cubic inertial term (m=3)

Proceeding as before, the following set of nine linear algebraic equations in the nine unknowns
fb0; b1; . . . ; b7;o2g is obtained

�4R2ð3þ nÞb1 ¼ 0; 64b0 � 16R2ð3þ nÞb2 � a0o2R4 5þ n
1þ n

¼ 0; (13)

12ð11þ nÞb1 � 36R2ð3þ nÞb3 � a1o2R4 5þ n
1þ n

¼ 0;

32ð7þ nÞb2 � 64R2ð3þ nÞb4 þ o2 2a0R
2 3þ n
1þ n

� a2R
4 5þ n
1þ n

� �
¼ 0;

20ð17þ 3nÞb3 � 100R2ð3þ nÞb5 þ o2 2a1R
2 3þ n
1þ n

� a3R
4 5þ n
1þ n

� �
¼ 0;

96ð5þ nÞb4 � 144R2ð3þ nÞb6 � o2 a0 � 2a2R
2 3þ n
1þ n

� �
¼ 0;

ð644þ 140nÞb5 � 196ð3þ nÞR2b7 � o2 a1 � 2a3R
2 3þ n
1þ n

� �
¼ 0; ð14Þ

ð832þ 192nÞb6 � a2o2 ¼ 0; ð1044þ 252nÞb7 � a3o2 ¼ 0: (15)

The determinantal equation stemming from it reads

ð2 527 200þ 3 153 105nþ 1 582 173n2 þ 406 618n3 þ 56 058n4

þ 3893n5 þ 105n6ÞR2a3 þ ð10 454 210þ 11 963 597nþ 5 573 931n2

þ 1 347 106n3 þ 177 016n4 þ 11 889n5 þ 315n6Þa1 ¼ 0:
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Thus the coefficients a1 and a3 in the density distribution must satisfy the relation

a1 ¼ �
38 880þ 31 761nþ 8865n2 þ 971n3 þ 35n4

160 834þ 114 773nþ 28 889n2 þ 2983n3 þ 105n4
R2a3:

Substituting this equation into Eqs. (13)–(15), we find

o2 ¼ 36ð29þ 7nÞb7=a3 (16)

and obtain the following solution for the coefficients in the stiffness:

b0 ¼ 3½ð95 265þ 100 425nþ 40 266n2 þ 7586n3 þ 661n4 þ 21n5ÞR2a2

þ ð601 692þ 560 052nþ 201 512n2 þ 34 680n3 þ 2812n4 þ 84n5Þa0
 R4b7=64a3M;

b1 ¼ 0;

b2 ¼ 3½ð31 755þ 22 890nþ 5792n2 þ 598n3 þ 21n4ÞR2a2 � ð63 336þ 60 064n

þ 20 784n2 þ 3104n3 þ 168n4Þa0
R
2b7=16a3M;

b3 ¼ ð64 800þ 44 295nþ 10 597n2 þ 1041n3 þ 35n4ÞR4b7=N;

b4 ¼ 3b7½ð1508þ 2220nþ 796n2 þ 84n3Þa0 � ð8265þ 6055nþ 1415n2

þ 105n3ÞR2a2
=32a3ð65þ 93nþ 31n2 þ 3n3Þ;

b5 ¼ �2R2ð25 527þ 20 092nþ 5424n2 þ 584n3 þ 21n4Þb7=N;

b6 ¼ 9ð29þ 7nÞa2b7=16a3ð13þ 3nÞ:

where

M ¼ 455þ 716nþ 310n2 þ 52n3 þ 3n4; N ¼ 5546þ 8165nþ 2983n2 þ 379n3 þ 15n4:

and b7 an arbitrary constant with the same sign as a3 (see Eq. (16)). For the particular case n ¼ 1
3
;

the stiffness equals

DðrÞ ¼ R6 168 965a2

19 712a3
þ

3337a0

64R2a3
þ

101 379a2

9856a3
�

705a0

32R2a3

� �
r

R

� �2

þ
21 524R

2295

r

R

� �3
�

þ �
17 625a2

1792a3
þ

141a0

64R2a3

� �
r

R

� �4

�
389R

51

r

R

� �5

þ
141a2

112a3

r

R

� �6

þ R
r

R

� �7
�

b7:
7. General inertial term (mX4)

Consider now the general expression of the inertial term given in Eq. (3) and the stiffness in
Eq. (4), for mX4: Substitution of Eqs. (2)–(4) into the terms of the differential equation (1) yields

r3DðrÞr4W ¼ 64r3
Xmþ4

i¼0

bir
i; (17)
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dD

dr
2r3

d3W

dr3
þ ð2þ nÞr2

d2W

dr2
� r

dW

dr

� �
¼ 4½ð17þ 3nÞr2 � ð3þ nÞR2
r2

Xmþ4

i¼1

ibir
i�1; (18)

d2D

dr2
r3

d2W

dr2
þ nr2

dW

dr

� �
¼ 4ð3þ nÞðr2 � R2Þr3

Xmþ4

i¼2

iði � 1Þbir
i�2; (19)

�rho2r3W ¼ �o2r3ðR2 � r2ÞðyR2 � r2Þ
Xm

i¼0

air
i: (20)

Demanding the sum of Eqs. (17)–(20) to be zero, we obtain

Xmþ7

i¼2

gir
i ¼ 0;

where the coefficients gi are

g2 ¼ �4ð3þ nÞb1;

g3 ¼ 64b0 � 16R2ð3þ nÞb2 � ya0R
4o2;

g4 ¼ 12ð11þ nÞb1 � 36R2ð3þ nÞb3 � ya1R
4o2;

g5 ¼ 32ð7þ nÞb2 � 64R2ð3þ nÞb4 � o2½ya2R
4 � ð1þ yÞa0R

2
;

g6 ¼ 20ð17þ 3nÞb3 � 100R2ð3þ nÞb5 � o2½ya3R
4 � ð1þ yÞa1R2
;

and for 7pipm þ 3

gi ¼ 4ði � 1Þ½ðnþ 3Þði � 1Þ þ 2ð1� nÞ
bi�3 � 4ði � 1Þ2R2ð3þ nÞbi�1

� o2½yR4ai�3 � ð1þ yÞR2ai�5 þ ai�7
;

gmþ4 ¼ 4ðm þ 3Þ½nþ mðnþ 3Þ þ 11
bmþ1 � 4R2ðm þ 3Þ2ð3þ nÞbmþ3

� o2½am�3 � ð1þ yÞR2am�1
;

gmþ5 ¼ 4ðm þ 4Þ½mðnþ 3Þ þ 2ðnþ 7Þ
bmþ2 � 4R2ðm þ 4Þ2ð3þ nÞbmþ4

� o2½am�2 � ð1þ yÞR2am
;

gmþ6 ¼ 4ðm þ 5Þ½3nþ 17þ mðnþ 3Þ
bmþ3 � o2am�1;

gmþ7 ¼ 4ðm þ 6Þ½mðnþ 3Þ þ 4ðnþ 5Þ
bmþ4 � o2am:

We demand all coefficients gi to be zero, thus, we get a set of m þ 6 homogeneous linear algebraic
equations for the m þ 6 unknowns fb0; b1; . . . ; bmþ4;o2g: In order to find a non-trivial solution the
determinant of the associated coefficient matrix must vanish. We expand the determinant along
the last column of the matrix of the set, getting a linear algebraic expression with ai as coefficients.
The determinantal equation yields a condition for which the non-trivial solution is obtainable. In
this case the general expression of the natural frequency squared is obtained from the equation
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gmþ7 ¼ 0; resulting in

o2 ¼
4ðm þ 6Þ½mðnþ 3Þ þ 4ðnþ 5Þ


am

bmþ4: (21)

Note that the formulas pertaining to the cases m ¼ 0; 2 and 3 are formally obtainable from Eq.
(21) by appropriate substitution.
8. An alternative mode shape

In the previous sections, we were able to obtain the stiffness distribution corresponding to a
polynomial density such that the fourth degree polynomial given in Eq. (2) served as a mode shape
for the simply supported plate. The question naturally arises: can we find a lower order
polynomial mode shape? Since there are two boundary conditions that need to be satisfied, we try
the second degree polynomial

W ¼ ðr � RÞ½nr � Rðnþ 2Þ
; (22)

which satisfies the simply supported boundary conditions W ¼ Mr ¼ 0 on r ¼ R (recall that
Mr ¼ �Dðq2W=qr2 þ n=rqW=qrÞ). In connection with this mode shape, we will limit our
discussion to the case of a constant density. Thus given d ¼ a040; we want to find DðrÞ and the
natural frequency o such that Eq. (22) is a solution of Eq. (1). It is sufficient to consider fourth
degree polynomials:

DðrÞ ¼ b0 þ b1r þ b2r
2 þ b3r

3 þ b4r
4:

Inserting this expression along with Eq. (22) into the differential equation, we find that the 6
unknowns fb0; b1; . . . ; b4;o2g must satisfy the following system of 5 homogeneous linear
equations:

b0 ¼ 0; nb1 þ Rð1� 2nÞb2 ¼ 0;

8nðnþ 1Þb2 � 4Rðnþ 1Þð3n� 1Þb3 � R2a0ðnþ 2Þo2 ¼ 0;

9nb3 þ 3Rð1� 4nÞb4 þ Ra0o2 ¼ 0; 32ðnþ 1Þb4 � a0o2 ¼ 0:

The last equation yields the natural frequency

o2 ¼ 32ðnþ 1Þb4=a0; (23)

where b4 is arbitrary but positive. The remaining stiffness coefficients are then given by

b0 ¼ 0; b1 ¼ R3ð2n� 1Þð12n2 þ 59nþ 35Þb4=18n3;

b2 ¼ R2ð12n2 þ 59nþ 35Þb4=18n3; b3 ¼ �5Rð4nþ 7Þb4=9n:

Since b0 ¼ 0; we must have b1X0 in order that the stiffness shall be non-negative. Based upon the
above solution, this implies that we must have nX1

2
: The plate stiffness is thus given by

DðrÞ ¼ x4 �
5ð4nþ 7Þ

9n
x3 þ

12n2 þ 59nþ 35

18n2
x2 þ

ð2n� 1Þð12n2 þ 59nþ 35Þ

18n3
x

� �
R4b4;

where x ¼ r=R: Fig. 3 shows the stiffness variation over the plate for n ¼ 1
2
and 2

3
:
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Fig. 3. Stiffness distribution of the simply supported plate for quadratic mode shape: ——, n ¼ 1
2
; - - - -, n ¼ 2

3
:
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