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Abstract

Apparently for the first time in the literature, an exact closed-form solution is derived for an
axisymmetrically vibrating inhomogeneous circular plate that is simply supported at its boundary. The
solution is characterized here as an unusual one since for its counterpart—the homogeneous plate,
transcendental functions are called for whereas here a solution is found in elementary functions, namely,
polynomials. The analysis is based on an inverse vibration problem: Given a candidate mode shape and
density distribution, we calculate the plate stiffness so that the governing equation for the plate mode shape
is identically satisfied. We also are able to obtain the expression for the corresponding natural frequency.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The free vibration of circular plates with variable thickness or density has received considerable
attention in the literature. Conway [1] found an unusual closed-form solution for a variable-
thickness plate on an elastic foundation, in a static setting. Whereas a constant thickness plate
involves Kelvin functions, Conway’s solution was derived in closed-form. Analogous, closed-form
solutions were derived by Harris [2] for plates of variable thickness, free on their boundary and by
Lenox and Conway [3] who studied plates with arbitrary conditions, and with parabolic thickness
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variation. In recent papers, Elishakoff [4,5] derived closed-form solutions for inhomogeneous
circular plates that are either clamped, or free at the boundary. Here we derive closed-form
solutions for the inhomogeneous plates that are simply supported at their boundary.

There appears to be a single monograph [6] solely devoted to plates of variable thickness. There
are several papers dedicated to vibrations of plates with thickness variations.

Axisymmetric vibration of circular plates of linearly varying thickness was studied by Prasad et
al. [7], whereas plates with double linear thickness were studied by Sing and Sascena [8]. Various
analytical and approximate techniques have been studied [9-17].

In this paper, we find closed form solutions to an inverse vibration problem for a simply
supported circular plate. Given a candidate mode shape and density distribution, we calculate the
plate stiffness so that the governing equation and boundary conditions for the plate mode shape
are identically satisfied. We also are able to obtain the expression for the corresponding natural
frequency. The solution is characterized here as an unusual one since for its counterpart—the
homogeneous plate, transcendental functions are called for whereas here a solution is found in
elementary functions, namely, polynomials. The solutions can also serve as benchmarks for
validations of numerical techniques.

2. Basic equations

The differential equation that governs the free axisymmetric vibration of the circular plate with
variable thickness reads [4]

dD d3 w de dw
4 3 2
d’D de dw
an <r3 a2 + vr? ar > — phw2r3 W =0, (1)

where D(r) is the plate flexural rigidity D = Eh3/12(1 —v?), h(r) is the thickness, v the Poisson
ratio, E the Young’s modulus, and p is the mass density. Here V? is the Laplacian operator in
polar coordinates (V> = d? /dr? + r~'d/dr) where r denotes the radial coordinate and W the mode
shape. Defining the inertial term (mass per unit area) d(r) = ph, we pose to find the stiffness
distribution D(r) and natural frequency w such that Eq. (1) is identically satisfied for a specified
o(r) and W (r).

To obtain a candidate mode shape, consider the static displacement of a uniform circular simply
supported plate under uniform load ¢, per unit area. From Ref. [18], we have

_ 2 2 2 2
w= 64D (R°—r)(OR ro),

where R is the radius of the plate and the parameter 0 depends solely of the Poisson ratio.
0=0G+v)/(1+v).
Thus we seek to determine under what conditions is the function

W = (R* - r*)OR*> — 1?) )
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a solution to Eq. (1). If we assume that the inertial term is a specified polynomial of degree m,

m

5=> ar, (3)
i=0

then it follows from Eq. (1) and the observation that W is a fourth degree polynomial, that the
stiffness must be of degree m + 4:

m+4

D= bt 4)
i=0

In the following sections we find the coefficients b; and natural frequency w for the case of a
constant, linear and parabolic inertial term.

3. Constant inertial term (m=0)

We are given ¢ = ay>0, and the stiffness is sought as a fourth-order polynomial
D(r) = by + bir + by + by + bar®.

Inserting this expression along with Eq. (2) into the differential equation (1), we obtain

where
2 2 24 Ot
=0, ¢1=0, c=—-4B+Vv)Rb;, c¢3=064by— 1603+ v)R°by — apw"R Ty
cs = 12(11 4+ v)by — 36(3 + v)R?bs,
3
s = 327+ bz — 643 + VRby + 2400 R - i :
co = (340 + 60V)b3,  ¢7 = 96(5 + )by — aper’. (5)

Demanding that the above set of (non-trivial) coefficient vanish, yields a set of six homogeneous
linear equations on the six unknowns {bg,by,...,bs, ®*}. Fortunately, the determinant of the
associated coefficient matrix is zero, hence a non-trivial solution is obtainable. Setting the
coefficient ¢7 to zero, we obtain the natural frequency

? = 96(5 + v)by/ay, (6)

where b, is arbitrary but positive.
Upon substitution of Eq. (6) into Eq. (5), the remaining equations yield the coefficients in the
stiffness:

57418V 402
T T2 +v)

34
1+v

R*by, b =0, by=—4 R*by, b3 =0.
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Fig. 1. Stiffness distribution of the simply supported circular plate with constant inertial term for several values of the

Poisson ratio: V=L v=h e v=1

Hence, the stiffness reads
57 + 18v +v? 3+v 5,
D)= ——— R*—4—"_ R’ by.
) < 20+ v) Ty KA

Fig. 1 depicts the stiffness for various values of the Poisson ratio v.

4. Linearly varying inertial term (m=1)

We are given 0 = ag + a;r, and the stiffness is sought as a fifth-order polynomial
D(r) = by + bir + bar* + byr® + bar* + bsr’.

Instead of set (5), we get here seven linear algebraic equations in the seven unknowns
{bo, b1, ..., bs,w%}:

—4(3+v)R*h =0,

5
64by — 16(3 + V)R2b> — agaR* 2> = 0,
I1+v
5
12311+ by = 366 +Rbs — a1’ R > : — 0,
32(7 4+ )by — 64(3 + V)R2by + 2apw? R? :15 i : 0,
3
(340 + 60v)bs — 100(3 + v)R2bs + 2a,0°R? 1—1‘; — 0,

96(5 + )by — agw® = 0,
(644 + 140v)bs — a > = 0. (7)
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In order to have a non-trivial solution, the determinant of the coefficient matrix must vanish

6 GV H)(5 + V(5546 + 2619 + 364 + 150))
1

=0.
14+v
Thus a; = 0, and we obtain the solution in the previous section.
5. Parabolically varying inertial term (m=2)
For m = 2, i.e. the plate whose material density varies parabolically,
o(r) = ap + arr + axr?, ()

the bending stiffness has to be a sixth-order polynomial
D(r) = by + bir + byr* + b3 + bar* + bsr® + ber®. 9)

Substitution of Eq. (2) in conjunction with Egs. (8) and (9) into the governing differential
equation (1) yields

where

do=0, d; =0, dr=—4R*G+ )by,
42+
14+v’

ds = 12(11 + v)b; — 36R*(3 4 v)b3 — aj’R

dy = 64by — 16R*(3 4+ v)by — apw’R
PR Y

14+v’
3 5
ds = 32(7 + v)by — 64R2(3 + by + 0  2a0R2 2 — 4R 21,
14+v 1+v
de = 20(17 4 3v)bs — 100R*(3 + v)bs + 2a;w*R o
d7 =96(5 4+ v)by — 144R°(3 + v)bg — @ (ao —2a>R g v> ,
ds = (644 + 140v)bs — a1@?,  do = (832 + 192v)bg — arv”. (10)

As in the case of the constant inertial term, we demand that all 4 = 0, thus, we get a set of eight
equations with eight unknowns (seven coefficients b, and w?). The resulting determinantal
equation is

(3 + v)(7 + v)a1 (360490 + 325 523v + 113 630v> + 19024v* + 1512v* 4 45v°) /(1 + v) = 0.

In order for the homogeneous system to have a non-trivial solution we must demand the
coefficient a; to vanish. Substituting a; = 0 into set (10) and using the last equation for the
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determination of the frequency, we obtain

? = 64(13 + 3v)bg /a (11)

and the stiffness coefficients

by = R*bg[(3285 + 2670v + 744v* + 82v* + 3v!)R’a,
+ (20 748 + 14 304v + 3496v> 4 352v* 4 12v%)ag] /12(35 + 47v + 13v* + v¥)ay,
b, =0,
(1095 + 525v + 73v2 + 3v)R2ar — (2184 + 1544y + 344v2 + 24v3)aq
- 335+ 47v + 132 +v¥)a,
(285 + 140v + 15v*)R%ay — (52 + 64v + 12v?)ay

3T 6(5 + 6v + v)as G T

b2 R2b69

where bg is an arbitrary constant. It follows from Eq. (11) that the ratio bs/a, must be positive.
We have two sub-cases: (1) both bg and a, are positive, or (2) both are negative. In the former case
(1) the necessary condition for positiveness of the stiffness by >0 is identically satisfied. In the
latter case (2) the above inequality reduces to

(3285 + 2670v 4 744v* + 82v° + 3vHR?
+ (20 748 + 14 304v 4 3496v* 4 352v° + 12v4)ag /a, <0,
leading to the inequality

a 3285 4 2670v + 744v? + 82v3 + 3v*
|a2| R? 720748 + 14304y + 349612 + 35213 + 12v4°

(12)

It is interesting to note that in this case the requirement that 6(R) be non-negative implies

a
—>1’
|y R> ™

which is stronger than inequality (12)

As an example, for v = %, the stiffness reads

3595  497q 719  35a r\ 2
D(r) = R®| | == — —
") [( 528 T 12R2a2> + (88 2R2a2) (R)
125 Tay ry\4 r\6
—— 4+ (= —) | be.
+ ( 16 +4R2a2> (R) + (R) ] 6

Fig. 2 depicts the variation of D(r) for different values of # = ay/(R%a>).
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Fig. 2. Stiffness distribution of the simply supported circular plate with parabolic inertial term and v = % for different

values of

6. Cubic inertial term (m=3)

’[:%;----,t:h ...... ’[:2,

Proceeding as before, the following set of nine linear algebraic equations in the nine unknowns

{bo, b1, ...,b7,»%} is obtained

—4R*(3 +v)b; =0,

64by — 16R*(3 + v)by — agw*R

a3ty

0, (13)

5
12011 + )by — 36R2(3 + )by — a1’ R* I_I: _ o,

3 5
3207+ )by — 64R23 + by + 0 ( 2002 " — ayR* 2V = 0,
1+v 1+v

3 5
20(17 + 3v)bs — 100R2(3 + v)bs + <2a1R2 R s v>

=0
1+4+v 4 14+v ’

3
96(5 + v)by — 144R*(3 + v)bg — »° <ao —2a, R? j: i) =0,

3
+ V)bs5 — +v 7 — 7| a] — 2a3 Y =0,
(644 + 140v)bs — 196(3 4+ v)R*b 2 2a3R? 1 Iv

(832 + 192v)bg — ar> = 0, (1044 + 252v)b7 — 300> = 0.

The determinantal equation stemming from it reads

(2527200 + 3153 105v + 1 582 173v* + 406 618v* + 56 058v*
+ 3893y + 105v)R%a3 + (10454210 + 11963 597v + 557393112
+ 1347106V + 177016v* + 11889y + 315v%)a; = 0.

(14)

(15)
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Thus the coefficients a; and a3 in the density distribution must satisfy the relation
a = — 38880 4 31761v + 8865v> + 971v? + 35v* )
160834 + 114 773v + 28 889v2 4 2983v3 4 105v*
Substituting this equation into Egs. (13)—(15), we find
w* = 36(29 4+ Tv)b7 /a3 (16)
and obtain the following solution for the coefficients in the stiffness:
by = 3[(95265 + 100425v + 40 266v* + 7586v* + 661v* + 21v°)R*a,
+ (601692 + 560 052v + 201 512v* 4 34 680v> + 2812v* 4 84v°)ay] R*b7/64a3 M,

as.

by = 3[(31755 4 22890v + 5792v + 598v* + 21v*)R%a> — (63 336 + 60 064v
+20784v* 4+ 3104v* + 168v*)ag]R*h7/16a3 M,

by = (64800 + 44295y + 10 597v> + 1041v* + 35v")R*b; /N,

by = 3b7[(1508 + 2220v + 796v* + 84v*)ay — (8265 + 6055v + 1415v?
+ 105v*)R%a3]/32a3(65 + 93v + 31v2 + 3v?),

bs = —2R*(25527 + 20092v + 5424v* + 584v* + 21v*)b; /N,
be = 9(29 + Tv)ab7/16a3(13 + 3v).
where
M = 455+ 716v + 310v* + 52v* + 3v*, N = 5546 + 8165v + 2983v* + 379v* + 15v*.

and b7 an arbitrary constant with the same sign as a3 (see Eq. (16)). For the particular case v = %,
the stiffness equals

R R

o ) @ 5 (R * e (B) R o

D(r) = RS [168 965a, 3337ay (101 379a,  705ay > (r)Z 21524R <r>3

19712a; ' 64Ras 9856a;  32R%a3) \R 2295 \R

7. General inertial term (m=>4)

Consider now the general expression of the inertial term given in Eq. (3) and the stiffness in
Eq. (4), for m=4. Substitution of Egs. (2)—(4) into the terms of the differential equation (1) yields

m+4
PDAVW =64 > bir', (17)
i=0
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dD [, d'W , W AW ) NP CEa
a <2r 0 + Q2+ v)r e r W) =4[(17 4+ 3v)r = 3+ v)Rr ; b, (18)
d*D 3 d*w » dW 2 2.3 ™= i—2
a2 ( a2 vr ar ) =43+ ) — R)r ; i(i — 1)bir'==, (19)
—pha?*PW = -0’ (R* — *)(OR* — %) Z a;r'. (20)

i=0

Demanding the sum of Egs. (17)—(20) to be zero, we obtain
m+7

Z gir' =0,
i=2

where the coefficients g; are
go = =43 + )by,
gy = 64by — 16R*(3 4 v)by — OagR*w»?,
gs = 12(11 +v)b; — 36R*(3 + v)b3 — Oa; R*w?,
gs = 32(7 + v)by — 64R*(3 + v)by — w’[0a:R* — (1 + 0)ayR?],
gs = 20(17 4 3v)b3 — 100R*(3 + v)bs — w*[azR* — (1 + O)a; R?),

and for 7<i<m+3
gi =4 — DI +3)i — 1)+ 2(1 = v)]bi_3 — 4G — 1)’R*3 + v)b;_
— &’ [0R a3 — (1 + O)R*a;_s + a;_7],

Imra = 4m + 3+ mO + 3) + Ubyyt — 4R (m + 3’3 + V)b
- wz[am—3 - (1 + H)Rzam—l]a

s = Hm+ DM + 3) + 200 + Dbpsa — 4R (M + 4’3 + )by
- wz[am72 - (1 + H)Rzam]a

Im+6 = 4(m + 5)[3\) + 17 + m(v + 3)]bm+3 - C02amfla
Gy = 4m + O)m(v + 3) + 40 + 5)yss — O .

We demand all coefficients g; to be zero, thus, we get a set of m 4+ 6 homogeneous linear algebraic
equations for the m 4+ 6 unknowns {b, by, . . ., bya, ®*}. In order to find a non-trivial solution the
determinant of the associated coefficient matrix must vanish. We expand the determinant along
the last column of the matrix of the set, getting a linear algebraic expression with @; as coefficients.
The determinantal equation yields a condition for which the non-trivial solution is obtainable. In
this case the general expression of the natural frequency squared is obtained from the equation
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Ims7 = 0, resulting in
o = K+ O)m(v +3) + 4(v + 5)]

[

bm+4- (2 1)

Note that the formulas pertaining to the cases m = 0, 2 and 3 are formally obtainable from Eq.
(21) by appropriate substitution.

8. An alternative mode shape

In the previous sections, we were able to obtain the stiffness distribution corresponding to a
polynomial density such that the fourth degree polynomial given in Eq. (2) served as a mode shape
for the simply supported plate. The question naturally arises: can we find a lower order
polynomial mode shape? Since there are two boundary conditions that need to be satisfied, we try
the second degree polynomial

W = (r— R)vr— R(v+2)], (22)

which satisfies the simply supported boundary conditions W = M, =0 on r = R (recall that
M, = —D@*W /or* +v/roW /or)). In connection with this mode shape, we will limit our
discussion to the case of a constant density. Thus given é = ay >0, we want to find D(r) and the
natural frequency w such that Eq. (22) is a solution of Eq. (1). It is sufficient to consider fourth
degree polynomials:

D(r) = by + bir + bzrz + b3r3 + b4r4.

Inserting this expression along with Eq. (22) into the differential equation, we find that the 6
unknowns {bg, by,...,bs,w*} must satisfy the following system of 5 homogeneous linear
equations:

by =0, vby+ R(1 —2v)by =0,

8v(v 4+ 1)by — 4R(v + 1)(3v — 1)bs — R*ap(v + 2)w* = 0,

9vbs + 3R(1 — 4v)bs + Ragw® =0,  32(v + )by — apw® = 0.
The last equation yields the natural frequency

w? = 32(v 4 1)by/ag, (23)

where by is arbitrary but positive. The remaining stiffness coefficients are then given by

by =0, by =RQ2v—1)(12V*+ 59v + 35)by/18V°,

by = R*(12v* + 59v 4 35)by /18V, b3 = —5R(4v + T)bs/9v.

Since by = 0, we must have b; >0 in order that the stiffness shall be non-negative. Based upon the
above solution, this implies that we must have v>%. The plate stiffness is thus given by

S@v+7) 5 122459435 , (v — 1)(122 + 59v + 35)
Ov 18v2 18v3

where & = r/R. Fig. 3 shows the stiffness variation over the plate for v = % and %

D(r)= |&* — &+ &+ | R*by,
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